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Abstract

A discrete method is developed for analyzing the free vibration problem of rectangular plates with point
supports. The fundamental differential equations involving Dirac’s delta function are established for the
bending problem of the plate with point supports. By transforming these differential equations into integral
equations and using numerical integration, the solution of these equations is obtained and used as Green
function to obtain the characteristic equation of the free vibration. The effects of the point support, the
boundary condition, the variable thickness and aspect ratio on the frequencies are considered. By
comparing the numerical results obtained by the present method with those previously published, the
efficiency and accuracy of the present method are investigated.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The plates with point supports play an important role in engineering fields, such as slabs on
columns in civil engineering and printed circuit board in electronic engineering. Due to their
practical importance, the free vibration analysis of these plates has received considerable
attention. According to the positions of the point supports, two kinds of the plates with point
supports have been studied. One is the plate with point supports along the edges. Another is the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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plate with interior point supports. Saliba [1] used the superposition method to analyze the free
vibration of rectangular cantilever plates with symmetrically distributed point supports along the
free edges. After 4 years, Saliba [2] used the same method to analyze the free vibration of
rectangular cantilever plates with symmetrically distributed interior point support. Bapat et al.
investigated the free vibration of rectangular plates with symmetrical point supports along the
edges [3] and with asymmetrical point supports along the edges [4]. The flexibility function
approach and the impulse function approach were used to simulate the point supports.
A comparison of these two methods was also given and the advantage of the flexibility function
method was shown. By using the same methods, Bapat and Suryanarayan [5] also studied the free
vibration of rectangular plates with interior point supports. By dividing the plate into two sub-
plates and satisfying the continuity conditions along the partition line and the compatibility
condition of zero deflection at the point support, a set of equations were obtained. By utilizing the
set of equations and the equivalent equations, the characteristic equation was obtained. Huang
and Thambiratnam [6] used the finite strip element method to study the free vibration analysis of
plates on elastic intermediate supports. The spring system was employed to simulate elastic
intermediate supports. Kim and Dickinson [7] employed the Lagrangian multiplier method to
analyze the free vibration of rectangular plates with arbitrarily located point supports. All of the
above studies are limited to the plates with uniform thickness.
Plates with variable thickness are also extensively used in engineering fields. The free vibration

analyses of these plates, such as plates with linearly varying thickness in one direction [8], plates
with variable thickness in one or two directions [9], plates with bidirectional thickness variation
[10] and plates with stepped thickness [11], have been studied.
In this paper, a discrete method is proposed for analyzing the free vibration of rectangular

plates with point supports. No prior assumption of shape of deflection, such as shape functions
used in the finite element method, is employed. The fundamental differential equations of a plate
with point supports involving Dirac’delta functions are established and satisfied exactly
throughout the whole plate. By transforming these equations into integral equations and using
numerical integration, the solutions are obtained at the discrete points. The Green function, which
is the solution for deflection, is used to obtain the characteristic equation of the free vibration. The
proposed method is a general method. It can be used to analyze the free vibration of rectangular
plates with arbitrarily located point support, various aspect ratio, variable thickness and general
boundary conditions. The purpose of the paper is (1) to investigate the efficiency and accuracy of
the present method for the rectangular plates with uniform thickness and point supports by
comparing the present results with those reported early, and (2) to investigate the effect of the
point support on the frequency parameter of plate with variable thickness.

2. Fundamental differential equations

Consider a rectangular plate of length a, width b, density r. An xyz coordinate system is used in
the present study with its x–y plane contained in the middle plane of the rectangular plate, the
z-axis perpendicular to the middle plane of the plate and the origin at one of the corners of the
plate.
In this paper, the concentrated loads with Dirac’delta functions are used to simulate the point

supports which limit the displacements of the plate but do not offer constraint on the slopes.
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Considering the equations of equilibrium, the strain–displacement relations, the stress–strain
relations and the load–stress relations, the fundamental differential equations of the plate having
a concentrated load P at a point ðxq; yrÞ and the point supports Pcd at each discrete point ðxc; ydÞ

are as follows:
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where Qx;Qy are the shearing forces, Mxy the twisting moment, Mx;My the bending moments,
yy; yx the rotations of the normal to the middle plane in the x- and y-directions, w the deflection,
D ¼ Eh3=ð12ð1� n2ÞÞ the bending rigidity, E;G modulus, shear modulus of elasticity, respectively,
n Poisson’s ratio, h the thickness of plate, ts ¼ h=1:2; dðx� xqÞ, dðx� xrÞ, dðx� xcÞ and dðx� xdÞ

Dirac’s delta functions.
By introducing the non-dimensional expressions,
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Eq. (1) is rewritten as the following non-dimensional forms:
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where m ¼ b=a, I ¼ mð1� n2Þðh0=hÞ3, J ¼ 2mð1þ nÞðh0=hÞ3, H ¼ ðð1þ nÞ=5Þðh0=aÞ2ðh0=hÞ, P ¼ Pa=
ðD0ð1� n2ÞÞ, Pcd ¼ Pcda=ðD0ð1� n2ÞÞ, D0 ¼ Eh30=ð12ð1� n2ÞÞ is the standard bending rigidity, h0

the standard thickness of the plate, k ¼ 5
6
the shear correction factor, dðZ� ZqÞ, dðz� zrÞ, dðZ� ZcÞ

and dðz� zdÞ Dirac’s delta functions.
In the above equation, the variable quantity h0=h has been separated and expressed only in the

quantities I, J and H so that the equation can be used for the plate with continuously variable
thickness or stepped thickness.
Eq. (2) can also be expressed as the following simple form:

X8
s¼1

F1ts
qX s

qz
þ F2ts

qX s

qZ
þ F3tsX s

� �
þ PdðZ� ZqÞdðz� zrÞd1t

þ
Xm

c¼0

Xn

d¼0

PcddðZ� ZcÞdðz� zdÞd1t ¼ 0, ð3Þ

where t ¼ 1–8; d1t is Kronecker’s delta; F111 ¼ F124 ¼ F133 ¼ F156 ¼ F167 ¼ F188 ¼ 1; F146 ¼ n;
F212 ¼ F223 ¼ F235 ¼ F247 ¼ F266 ¼ m; F257 ¼ mn; F278 ¼ 1; F321 ¼ F332 ¼ �m; F345 ¼ F354 ¼ �I ;
F363 ¼ �J; F372 ¼ �H; F377 ¼ 1; F381 ¼ �mH; F386 ¼ m; other Fkts ¼ 0.
3. Discrete green function

As given in Ref. [9], by dividing a rectangular plate vertically into m equal-length parts and
horizontally into n equal-length parts as shown in Fig. 1, the plate can be considered as a group of
discrete points which are the intersections of the ðmþ 1Þ-vertical and ðnþ 1Þ-horizontal dividing
lines. To describe the present method conveniently, the rectangular area, 0pZpZi, 0pzpzj,
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Fig. 1. Discrete points on a rectangular plate.
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corresponding to the arbitrary intersection ði; jÞ as shown in Fig. 1 is denoted as the area ½i; j�, the
intersection ði; jÞ denoted by� is called the main point of the area ½i; j�, the intersections denoted
by � are called the inner dependent points of the area, and the intersections denoted by � are called
the boundary-dependent points of the area.
By integrating Eq. (3) over the area ½i; j�, the following integral equation is obtained:
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where uðZ� ZqÞ, uðz� zrÞ, uðZ� ZcÞ and uðz� zdÞ are the unit step functions.
Next, by applying the trapezoidal rule of the approximate numerical integration over the area
½i; j�, the simultaneous equation for the unknown quantities X sij ¼ X sðZi; zjÞ at the main point ði; jÞ
of the area ½i; j� is obtained directly from Eq. (4) as follows:
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where bik ¼ aik=m;bjl ¼ ajl=n; aik ¼ 1� ðd0k þ dikÞ=2; ajl ¼ 1� ðd0l þ djlÞ=2; t ¼ 1–8; i ¼ 1–m; j ¼

1–n; uiq ¼ uðZi � ZqÞ; ujr ¼ uðzj � zrÞ; uic ¼ uðZi � ZcÞ; ujd ¼ uðzj � zdÞ.
By retaining the quantities at main point ði; jÞ on the left-hand side of the equation, putting

other quantities on the right-hand side, the following equation can be obtained:
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By using the matrix transition, the solution X pij of the above Eq. (6) is obtained as follows:
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where p ¼ 1–8, Apt, Bpt and Cptkl are given in Appendix A.
In Eq. (7), the quantity X pij is not only related to the quantities X tk0 and X t0l at the boundary

dependent points but also the quantities X tkj, X til and X tkl at the inner dependent points. The
maximal number of the unknown quantities is 6ðm� 1Þðn� 1Þ þ 3ðmþ nþ 1Þ. In order to reduce
the unknown quantities, the area ½i; j� is spread according to the regular order as ½1; 1�,
½1; 2�; . . . ; ½1; n�, ½2; 1�, ½2; 2�; . . . ; ½2; n�; . . . ; ½m; 1�, ½m; 2�; . . . ; ½m; n�. With the spread of the area
according to the above-mentioned order, the quantities X tkj, X til and X tkl at the inner dependent
points can be eliminated by substituting the obtained results into the corresponding terms of the
right-hand side of Eq. (7). By repeating this process, the quantity X pij at the main point is only
related to the quantities X rk0 ðr ¼ 1; 3; 4; 6; 7; 8Þ and X s0l ðs ¼ 2; 3; 5; 6; 7; 8Þ at the boundary
dependent points. The maximal number of the unknown quantities is reduced to 3ðmþ nþ 1Þ. It
can be noted the number of the unknown quantities of the present method is fewer than that of
the finite element method for the same divisional number mðX3Þ and nðX3Þ. Based on the above
consideration, Eq. (7) is rewritten as follows:

X pij ¼
X6
d¼1

Xi
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g¼0

bpijgdX s0g

( )
þ qpijPþ
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Xn

d¼0

qpijcdPcd , (8)

where apijfd , bpijgd , qpij and qpijcd are given in Appendix B.
Eq. (8) gives the discrete solution of the fundamental differential Eq. (3) of the bending problem

of a plate with a concentrated load and point supports, and the discrete Green function is chosen
as X 8ija

2=½PD0ð1� n2Þ�, that is wðx0; y0; x; yÞ=P.
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4. Characteristic equation

During the free vibration, for the harmonic displacement, there is inertial force
rho2ŵðx; yÞdxdy at every point ðx; yÞ, in which r is the mass density of the plate material, o is
the circular frequency and ŵðx; yÞ is the displacement at point ðx; yÞ. By applying the Green
function wðx0; y0;x; yÞ=P, which is the displacement of point ðx0; y0Þ of a plate with a unite
concentrated load at point ðx; yÞ, the displacement of point ðx0; y0Þ of a plate with inertial force
rho2ŵðx; yÞdxdy at point ðx; yÞ is rho2ŵðx; yÞ½wðx0; y0;x; yÞ=P�dxdy. Therefore, by using the
method of superposition, the displacement amplitude ŵðx0; y0Þ of point ðx0; y0Þ of the rectangular
plate during the free vibration is given as follows:

ŵðx0; y0Þ ¼

Z a

0

Z b

0

rho2ŵðx; yÞ½wðx0; y0; x; yÞ=P�dxdy. (9)

By using the numerical integration method and the following non-dimensional expressions:
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,

where r0 is the standard mass density, the characteristic equation is obtained from Eq. (9) as
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. ..
. ..
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where

Kij ¼ bmj
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. ..
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. . .
. ..

.

bn0Hj0Ginj0 bn1Hj1Ginj1 bn2Hj2Ginj2 � � � bnnHjnGinjn � kdij

2
66666664

3
77777775
.

5. Numerical results

To investigate the validity of the proposed method, the frequency parameters are given for
rectangular plates with arbitrarily located point supports, various aspect ratios, general boundary
conditions and variable thickness. In this paper, three kinds of plates with variable thickness are
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Fig. 2. Plates with variable thickness: (a) variable thickness in one direction h ¼ h0ð1þ ax=aÞ; (b) variable thickness in

two directions h ¼ h0ð1þ ax=aÞð1þ by=bÞ and (c) stepped thickness in one direction.
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studied and they are shown in Fig. 2. The ratio of the thickness and length h0=a ¼ 0:001 is
adopted. In all tables and figures, the symbols F, S, and C denote free, simply supported and
clamped edges. Four symbols such as SCFC delegate the boundary conditions of the plate, the
first indicating the conditions at x ¼ 0, the second at y ¼ 0, the third at x ¼ a and the fourth at
y ¼ b. All the convergent values of the frequency parameters are obtained for the plates by using
Richardson’s extrapolation formula for two cases of divisional numbers m ð¼ nÞ. Some of the
results are compared with those reported previously.

5.1. Rectangular plates with a central point support

In order to examine the convergency, numerical calculation is carried out by varying the
number of divisions m and n for a SSSS square plate with a central point support. The lowest 6
natural frequency parameters of the plate are shown in Fig. 3. It shows a good convergency of the
numerical results by the present method. After studying the figure, it is decided to obtain the
convergent results of frequency parameter by using Richardson’s extrapolation formula for two
cases of divisional numbers m ð¼ nÞ of 14 and 16. By the same method, the suitable number of
divisions m ð¼ nÞ can be determined for the other plates.
Table 1 shows the numerical values for the lowest 6 natural frequency parameter l of SSSS

rectangular plates with a central point support. The aspect ratios b=a ¼ 0:5; 1:0; 2:0 are
considered. The results obtained by Huang and Thambiratnam [6] and Kim and Dickinson [7]
are also shown in the table. The nodal lines of 6 modes of free vibration of the plates with
b=a ¼ 0:5; 1:0 are shown in Fig. 4, which are identical to those obtained in Ref. [6] for the square
plate. The mode with no nodal line is the third one for the square plate, but the second mode for
plates with b=a ¼ 0:5.
Table 2 shows the numerical values for the lowest 6 natural frequency parameter l of CCCC

rectangular plates with a central point support and aspect ratios b=a ¼ 0:5; 1:0; 2:0. The present
results of CCCC square plate are in good agreement with those obtained by Kim and Dickinson
[7]. The nodal lines of 6 modes of the plates with b=a ¼ 0:5; 1:0 are shown in Fig. 5. It can be
observed for the modes with nodal lines passing through the center of the plate, the frequency
parameters and mode shapes are the same for the plates with or without a central point support.
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Fig. 3. The natural frequency parameter l versus the divisional number m ð¼ nÞ for the SSSS square plate with a

central point support.
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The phenomenon occurred in CCCC plate is as the same as that in SSSS plate. For the ratio
b=a ¼ 1:0, the nodal lines of modes of CCCC plates are as the same as those of SSSS plates. For
the ratio b=a ¼ 0:5, there are some changes of mode order in the third, fourth, fifth and sixth
modes. From Tables 1 and 2, it can be noted the boundary conditions affect the frequency
parameters considerately.

5.2. Square plates with a point support on a corner

Table 3 shows the numerical values for the lowest 6 natural frequency parameter l of
square plates with a point support on the corner ða; bÞ. Three kinds of boundary conditions
are considered. Table 3 involves the other values obtained by Kim and Dickinson [7] and it
shows satisfactory accuracy of the numerical results by the present method. Fig. 6 shows the
effect of the aspect ratio on the frequency parameters. It can be noted the frequency para-
meters decrease with the increase of the aspect ratio for all of these plates. Due to the
similarity between the mode shapes of SSFF and CCFF plates, the mode shapes of CCFF
plates are omitted. Only the mode shapes of SCFF and SSFF plates with b=a ¼ 1:0; 1:5 are shown
in Fig. 6.
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Table 1

Natural frequency parameter l for SSSS rectangular plates with a central point support

b=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 Present

14� 14 9.195 10.132 13.479 15.242 14.631 16.086

16� 16 9.172 10.055 13.427 15.027 14.572 15.768

Ex:	 9.096 9.802 13.259 14.325 14.381 14.728

1 Present

14� 14 7.297 7.297 7.828 9.254 10.539 11.977

16� 16 7.272 7.272 7.743 9.216 10.449 11.885

Ex. 7.191 7.191 7.466 9.095 10.158 11.585

Ref. [6] 7.19 7.19 7.44 9.10 — —

Ref. [7] 7.192 7.192 7.466 9.098 10.172 11.597

2 Present

14� 14 4.598 5.066 6.740 7.621 7.316 8.043

16� 16 4.586 5.027 6.714 7.514 7.286 7.884

Ex. 4.548 4.901 6.629 7.162 7.195 7.364

Ex:	: The convergent values of the frequency parameters obtained by using Richardson’s extrapolation formula.

2nd 3rd 4th 5th 6th1st

2nd 3rd 4th 5th 6th1st

b/a=0.5

b/a=1.0

Fig. 4. Nodal patterns for SSSS rectangular plates with a central point support.
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5.3. CFFF square plates with two arbitrarily located point supports

Table 4 shows the numerical values for the lowest 6 natural frequency parameter l of the CFFF
square plate with two point supports. The points ða=2; 0Þ; ða=2; bÞ, the points ða=2; b=4Þ; ða=2; 3b=4Þ
and points ða=4; 3b=4Þ; ð3a=4; b=4Þ are chosen as the positions of the two supports, respectively. In
order to compare with the results obtained by Saliba [1,2] and Kim and Dickinson [7], two kinds
of Poisson’s ratio n ¼ 0:333 and n ¼ 0:3 are used. Table 4 shows satisfactory accuracy of the
numerical results by the present method and the fundamental frequency parameter of plate with
two point supports along the edge is lower than those of corresponding plates with interior two
point supports. The optimal location of the point support in increasing the fundamental frequency
parameter discussed here is at point ða=2; b=4Þ; ða=2; 3b=4Þ.
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Table 2

Natural frequency parameter l for CCCC rectangular plates with a central point support

b=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 Present

14� 14 11.712 12.636 16.804 17.458 17.699 18.874

16� 16 11.674 12.534 16.702 17.160 17.595 18.391

Ex. 11.549 12.200 16.368 16.185 17.253 16.813

1 Present

14� 14 8.966 8.966 9.675 10.905 12.325 13.718

16� 16 8.919 8.919 9.545 10.844 12.182 13.579

Ex. 8.766 8.766 9.121 10.645 11.714 13.125

Ref. [7] 8.771 8.771 9.175 10.651 11.745 13.152

2 Present

14� 14 5.856 6.318 8.402 8.729 8.850 9.438

16� 16 5.837 6.267 8.351 8.580 8.798 9.196

Ex. 5.774 6.100 8.184 8.093 8.627 8.407

b/a=0.5

b/a=1.0

2nd 3rd 4th 5th 6th1st

2nd 3rd 4th 5th 6th1st

Fig. 5. Nodal patterns for CCCC rectangular plates with a central point.
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5.4. SSSS square plates with variable thickness in one direction

Table 5 presents the numerical values for the lowest 6 natural frequency parameter l of the
SSSS square plates with variable thickness in one direction shown in Fig. 2(a). For the plate with a
central point support, three cases of a ¼ 0:1; 0:8; 1:2 are considered. The numerical values for the
lowest 6 natural frequency parameter l of the SSSS square plates without point support are also
shown and compared with the results of Appl and Byers [8]. The nodal lines of 6 modes of free
vibration of these plates are shown in Fig. 7. For the plates without point supports, the vertical
nodal lines move to the thinner part with increase of the value of a. The changes can be found in
the third, the fourth and the sixth mode shapes. For the plates with a central point support, the
straight lines change to curve lines with increase of the value of a. The changes can be found in the
first and fifth mode shapes. The obvious change can be also found in the third mode.
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Table 3

Natural frequency parameter l for square plates with a point support on the corner ða; bÞ

BC References Mode sequence number

1st 2nd 3rd 4th 5th 6th

SSFF Present

14� 14 3.274 4.285 5.814 6.958 7.465 8.467

16� 16 3.260 4.279 5.790 6.920 7.429 8.417

Ex. 3.213 4.260 5.712 6.794 7.311 8.255

Ref. [7] 3.174 4.261 5.663 6.765 7.315 8.214

SCFF Present

14� 14 3.637 4.763 6.224 7.221 8.041 8.860

16� 16 3.623 4.752 6.196 7.184 7.989 8.809

Ex. 3.576 4.717 6.108 7.065 7.820 8.644

Ref. [7] 3.538 4.711 6.059 7.049 7.807 8.617

CCFF Present

14� 14 4.120 5.048 6.603 7.788 8.315 9.314

16� 16 4.100 5.038 6.574 7.745 8.265 9.251

Ex. 4.035 5.005 6.478 7.563 8.102 9.047

Ref. [7] 3.988 5.008 6.426 7.535 8.117 9.009
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5.5. SSSS square plates with variable thickness in two directions

Table 6 presents the numerical values for the lowest 6 natural frequency parameter l of the
SSSS square plates with variable thickness in two directions shown in Fig. 2(b). For the plate with
a central point support, three kinds of combination of a and b are considered. The numerical
values for the lowest 6 natural frequency parameter l of the SSSS square plates without point
support are also shown and compared with the results of Singh and Saxena [10]. Table 6 shows the
frequency parameter l increases with the increase of a or b for both the plates with and without
point support.
5.6. SSSS square plates with stepped thickness in one direction

Table 7 presents the numerical values for the lowest 6 natural frequency parameter l of the
SSSS square plates with stepped thickness in one direction shown in Fig. 2(c). For the plate with a
central point support, two kinds of the ratios c=a and h1=h0 are considered. The numerical values
for the lowest 6 natural frequency parameter l of the SSSS square plates without point support
are also shown and compared with the exact solutions obtained by Xiang and Wang [11]. It is
noted the present results agree well with these exact solutions of plates without point support even
for the higher frequency parameters. The frequency parameters increase with the increase of the
ratio of c=a or h1=h0. The effects of the ratios c=a and h1=h0 on the frequency parameters are
significant.
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Fig. 6. The natural frequency parameter l and mode shape versus the aspect ratio for the rectangular plates with a

point support on the corner ða; bÞ: (a) the first frequency parameters and mode shapes; (b) the second frequency

parameters and mode shapes; (c) the third frequency parameters and mode shapes and (d) the fourth frequency

parameters and mode shapes.
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6. Conclusions

A discrete method is extended for analyzing the free vibration problem of rectangular plate with
point supports. No prior assumption of shape of deflection, such as shape functions used in the
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Table 5

Natural frequency parameter l for SSSS square plates with variable thickness in one direction

Cases of point support a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

Plate with no point support 0.1 Present

Ex. 4.660 7.367 7.367 9.318 10.402 10.406

Ref. [8] 4.661 — — — — —

0.8 Present

Ex. 5.356 8.412 8.466 10.698 11.767 11.914

Ref. [8] 5.355 — — — — —

Plate with a central point support 0.1 Present

Ex. 7.360 7.367 7.657 9.318 10.405 11.858

0.8 Present

Ex. 8.241 8.412 9.022 10.698 11.835 13.269

1.2 Present

Ex. 8.658 8.917 9.731 11.384 12.502 13.920

Table 4

Natural frequency parameter l for CFFF rectangular plates with two point supports

Position of point supports n References Mode sequence number

1st 2nd 3rd 4th 5th 6th

ða=2; 0Þ; ða=2; bÞ 0.333 Present

Ex. 2.570 4.154 5.205 6.451 7.440 8.037

Ref. [1] 2.525 4.099 5.162 6.364 7.295 —

Ref. [7] 2.538 4.127 5.166 6.420 7.394 —

ða=2; b=4Þ; ða=2; 3b=4Þ 0.333 Present

Ex. 3.225 4.118 5.184 7.054 7.561 8.011

Ref. [2] 3.173 4.086 5.228 6.999 7.424 —

ða=2; 0Þ; ða=2; bÞ 0.3 Present

Ex. 2.586 4.173 5.166 6.467 7.397 7.998

Ref. [7] 2.562 4.172 5.158 6.473 7.392 —

ða=2; b=4Þ; ða=2; 3b=4Þ 0.3 Present

Ex. 3.133 4.221 5.280 7.474 6.831 8.016

ða=4; 3b=4Þ; ð3a=4; b=4Þ 0.3 Present

Ex. 2.908 5.045 5.363 6.015 6.521 7.506
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finite element method, is employed in this method. A concentrated load with Dirac’s delta
function is used to simulate the point support. The characteristic equation of the free vibration is
gotten by using the Green function. The effects of positions of point supports, the variable
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2nd 3rd 4th 5th 6th1st

2nd 3rd 4th 5th 6th1st

2nd 3rd 4th 5th 6th1st

2nd 3rd 4th 5th 6th1st

� = 0.1

� = 0.8

� = 0.1

� = 0.8

� = 1.2

(a)

(b)

Fig. 7. Nodal patterns for SSSS rectangular plates with variable thickness in one direction: (a) plates without point

support and (b) plates with a central point support.

Table 6

Natural frequency parameter l for SSSS square plates with variable thickness in two directions

Cases of point support a b References Mode sequence number

1st 2nd 3rd 4th 5th 6th

Plate with no point support 0.5 �0.5 Present

Ex. 4.365 6.806 6.880 8.705 9.520 9.620

Ref. [10] 4.365 6.810 6.882 — — —

0.5 0.5 Present

Ex. 5.659 8.880 8.935 11.302 12.515 12.515

Ref. [10] 5.659 8.885 8.938 — — —

Plate with a central point support �0.5 �0.5 Present

Ex. 4.995 5.302 5.776 6.702 7.319 8.005

0.5 �0.5 Present

Ex. 6.583 6.869 7.431 8.706 9.566 10.573

0.5 0.5 Present

Ex. 8.684 8.945 9.510 11.303 12.515 13.972
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thickness, the aspect ratio and the boundary conditions on the frequencies are considered. Some
results by the present method have been compared with those previously reported. It shows that
the present results have a good convergence and satisfactory accuracy.
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Table 7

Natural frequency parameter l for SSSS square plates with stepped thickness in one direction

Cases of point support c=a h1=h0 References Mode sequence number

1st 2nd 3rd 4th 5th 6th

Plate with no point support 0.25 0.5 Present

Ex. 3.647 5.463 5.464 7.115 7.470 7.705

Ref. [11] 3.658 5.451 5.477 7.136 7.485 7.666

0.25 0.8 Present

Ex. 4.198 6.578 6.593 8.365 9.221 9.359

Ref. [11] 4.199 6.582 6.589 8.367 9.239 9.368

0.75 0.8 Present

Ex. 4.411 6.947 7.018 8.827 9.837 9.939

Ref. [11] 4.421 6.966 7.035 8.844 9.862 9.980

Plate with a central point support 0.25 0.5 Present

Ex. 5.227 5.473 5.754 7.115 7.582 8.614

0.25 0.8 Present

Ex. 6.547 6.578 6.833 8.365 9.290 10.598

0.75 0.5 Present

Ex. 6.223 6.695 7.351 8.410 9.423 10.419

0.75 0.8 Present

Ex. 6.923 7.032 7.392 8.843 9.904 11.207

M. Huang et al. / Journal of Sound and Vibration 300 (2007) 435–452450
Acknowledgment

The present study is sponsored by the Japan Society for the Promotion.
Appendix A

Ap1 ¼ gp1; Ap2 ¼ 0; Ap3 ¼ gp2; Ap4 ¼ gp3; Ap5 ¼ 0,

Ap6 ¼ gp4 þ ngp5; Ap7 ¼ gp6; Ap8 ¼ gp7,

Bp1 ¼ 0; Bp2 ¼ mgp1; Bp3 ¼ mgp3; Bp4 ¼ 0,

Bp5 ¼ mgp2; Bp6 ¼ mgp6; Bp7 ¼ mðngp1 þ gp5Þ; Bp8 ¼ gp8,

Cp1kl ¼ mðgp3 þ kklgp7Þ; Cp2kl ¼ mgp2 þ kklgp8,

Cp3kl ¼ Jgp6; Cp4kl ¼ Iklgp4; Cp5kl ¼ Iklgp5,

Cp6kl ¼ �mgp7; Cp7kl ¼ �gp8; Cp8kl ¼ 0; ½gpk� ¼ ½gpk�
�1,
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g11 ¼ bii; g12 ¼ mbjj ; g22 ¼ �mbij ; g23 ¼ bii; g25 ¼ mbjj,

g31 ¼ �mbij ; g33 ¼ mbjj ; g34 ¼ bii; g44 ¼ �I ijbij ; g46 ¼ bii,

g47 ¼ mnbjj ; g55 ¼ �I ijbij; g56 ¼ nbii; g57 ¼ mbjj; g63 ¼ �Jijbii,

g66 ¼ mbjj ; g67 ¼ bii; g71 ¼ �mkijbij ; g76 ¼ mbij ; g78 ¼ bii; g82 ¼ �Hijbij,

g87 ¼ bij ; g88 ¼ bjj; other gpk ¼ 0; bij ¼ biibjj.
Appendix B

a1i0i1 ¼ a3i0i2 ¼ a4i0i3 ¼ 1; a6i0i4 ¼ a7i0i5 ¼ a8i0i6 ¼ 1,

b20jj1 ¼ b30jj2 ¼ b50jj3 ¼ 1; b60jj4 ¼ b70jj5 ¼ b80jj6 ¼ 1; b30002 ¼ 0,

apijfd ¼
X8
t¼1

Xi

k¼0

bikApt½atk0fd � atkjfdð1� dkiÞ� þ
Xj

l¼0

bjlBpt½at0lfd � atilfdð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklatklfdð1� dkidljÞ

)
,

bpijfd ¼
X8
t¼1

Xi

k¼0

bikApt½btk0gd � btkjgdð1� dkiÞ� þ
Xj

l¼0

bjlBpt½bt0lgd � btilgdð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklbtklgdð1� dkidljÞ

)
,

qpij ¼
X8
t¼1

Xi

k¼0

bikApt½qtk0 � qtkjð1� dkiÞ� þ
Xj

l¼0

bjlBpt½qt0l � qtilð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptkl � Ap1uiqujr

)
,

qfpijcd ¼
X8
e¼1

Xi

k¼0

bikApe½qfek0cd � qfekjcdð1� dkiÞ� þ
Xj

l¼0

bjlBpe½qfe0lcd � qfeilcdð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCpeklqfeklcdð1� dkidljÞ

)
� gpf uikujrufkl.
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